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ON THE PROBLEM OF REINFORCEMENT OF THE HOLE OUTLINE IN 
A PLATE BY A MOMENTLESS ELASTIC ROD* 

L. M. KURSHIN and G. I. RASTORGUEV 

The shape of the hole outline in a plate and the law of stiffness variation of a rein- 
forcing momentless rod are sought from the condition of the minimum total elastic strain 
energy of the plate and the reinforcement. The area enclosed by the outline of the cutout, 
and the magnitude of the volume of the reinforcing element are considered given. The bound- 
ary conditions of the problem are obtained by varying the functional related to the elastic 
strain energy in domains with moving boundaries. The solution is constructed in the form of 
an expansion in.tenns of a small parameter, for which the parameter of nonsymmetry of the 
load is taken. The solution obtained in this manner differs substantially from the solution 
obtained in /l/. 

The problem of logical reinforcement of a hole outline in a plane state of stress has 
been investigated by many authors. The bending stiffness of the reinforcing element concent- 
rated at the hole outline can be neglected and considered a momentless rod. Certain estimates 
of the error hence induced are presented in /l-4/, for instance. Reinforcement of an out- 
line of given shape (circle, ellipse) by an elastic momentless rod has been investigated in 
/4-ll/. It is shown that a decrease in the stress concentration in the plate can beachieved 
because of the appropriately selected variable of the section area of the reinforcing rod. 
Not only the law of variation of the rod section area is sought in the problem of equivalent 
reinforcement /l/, but also the shape of the cutout for which the same state of stress is 
conserved outside the reinforcement as exists for a plate without a hole. The solution of 
this problem exists in a limited band of load relationships , and the volume occupied by the 
reinforcement exceeds the part removed for the formation of the cutout by several times,as a 
rule. 

1. Formulation of the problem. The plane state of stress of a thin plate with a 
hole (Fig.1) is considered. At a sufficient distance from the cutout the stresses are 

0, = p, uy = q, Txp = 0 (1.1) 

The hole outline L is reinforced by a momentless elastic rod with variable stiffness 
under tension G (8) . The plate elastic modulus, Poisson's ratio, and thickness are denoted 
by E, v, h . The shape of the outline L and the law of variation of the rod stiffness G (s) 
are sought from the condition of minimum total elastic strain energy of the plate and the re- 
inforcing rod for given area D, domain G' bounded by the outline L, and magnitude of the 
integral H 

For a constant elastic 
that the volume (or weight) 

For an unbounded plate 

j)lxdy=D, jG(s)ds=H (1.2) 

modulus of the reinforcement material the last condition means 
of the reinforcing element is given. 
we understand the strain energy to be the strain energy of the -. 

part of the plate (the domain Q) included between the hole outline L and some sufficiently 
remote fixed closed outline L1 outside which the undisturbed state of stress has the form 

(1.1). 
Let us examine the functional 

J=-$SS [uX~+v;+ ZVU&-t- rl(Uv-t-U~)21dzdy + -+i (- u,*Y,+v,*&XG(s)dS- hj (P%U fqy,v)ds (1.3) 

n I. I., 

K = Eh ,’ (i - v’), y1 = (i - v) / 2 

Here u,o are displacement vector components of points of the plate in the Cartesian coordin- 
ate system soy, the asterisks denote the appropriate quantities referred to the reinforcement; 
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the direction of traversal in the contour integrals is counter-clockwise, s is the arc co- 
ordinate measured along the outline from a certain initial point, the subscripts denote dif- 
ferentiation with respect to the appropriate variable z, =I cos (n, z), Yn = cos (n, y) are direc- 
tion cosines of the normal n. 

The first two components in the right side of (1.3) are the strain energies of the plate 
and the reinforcement while the last nonvariable component is the work of the external forces. 
The necessary conditions for stationarity of the Lagrange functional J for a fixed outline L 
and nonvariable stiffnessG(S)are the equilibrium differential equations in the domain and 
the static boundary conditions. 

The problem to determine the shape of the hole outline L intheplateandthelawofstiff- 
ness variations G(s) of the reinforcing rod can be formulated as a variational problem on 
the stationary value of the functional (1.3) in domains with moving boundaries under the ad- 
ditional conditions (1.2). To solve the isoperimetric variational problem, we form the func- 
tional 

U=J+hl~~dsdy+ha 
0 

(1.4) 

where A,, h, are constant Lagrange multipliers. For the first variation of the functional 
(1.4) for a mobile outline L and variable stiffness G (s) , we obtain 

sv=--JSS&X+y IQ+ 
R 

w,)&+ (v,+ VI%+ y,u,)8v1ldzdy-- y ITr(s)bul+ Ta(s)&] ds- (1.5) 
i 

-$ [us2 + vu2 $ ~YU.J~, -+- y1 (uu + vJa] dnds + K 5 ITI (s) 6~ + TS (s) 8~1 ds + 5 { [ + Es (S) + A*] G -I- 
L% L 

al’ (s) (y,du$- q,b*) + t al (s) (x,&s* + Y,Jv~*) + [ hl + $ bG (s) - -& aa (s) - B’ (s)] an) ds - 

h (PX& + ai,&) ds 

8u, = su - u,sx - lqy, 8u, = sv - v,8x = vJiy 
8u,* = 8u+ - us*&, 8v,* = Sv* - us*&, 8G, = 8G - G& 

Tl (4 = (4 + y/) xn + Yl @, + 4 Yn 
T, (4 = (vv + WJ Yn + Yl (%I + %) xn 
al(s) = E (s) G (s), u2 (s) = E2 (s) G (s) 

p (4 = (u,*x, + %*Yn) a, (4, yz = (I + v) / 2 

Here 6u,6v,6u*,iW',6G are the total variations of theappropriatequantities, 6x9 6Y are 
variations of coordinates of points of the outline referred to the SOY coordinate system, 
tin, 6t are variations of points of the outline in a coordinate system associated with the 
normal n and the tangent t to the requiredoutline L, p is the radius of curavture of the 
outline, and E(S)-= -U,*y, + v&*x,, is the strain of the reinforcing rod. 

Let us examine obtaining the variation (1.5) in greater detail. Variation of double in- 
tegrals with variable domain of integration was examined in a numer of papers ( see the approp- 
riate references in /12/, for instance). Let us clarify the evaluation of the variations of 
the contour integrals in (1.4) with variable outline L: 

s 1 
J1 = G (s) ds, JZ= T s C (s) (- us*yn + c~~*.Qds 

1. L 

A method is described in /13/ to obtain variations of a miltiple integral with moving 
boundaries for which the independent variables are considered as functions of other auxiliary 
nonvariable variables with fixed range of variation. Extending the same method to the calcula- 
tion of the variations of the contour integrals J1,J2, we assume the arclength coordinate s 
and all the qantities in the integrand are functions of a certain nonvariable parameter E 

where L*is a certain fixed outline. We consequently arrive at the usual problem of calculat- 
ing the contour integrals with a fixed contour. For bJ,we have 
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Returning to the initial variable s and taking account of the equalities 

&S = z&z + y&y, at= s,dz + y&y, 3R - y,, y, =i -Z( 
and the notation in (1.51, we obtain 

8J* = 

L 

We perform analogous actions in evaluating *la 

Integrating by parts, going over to the variable s and taking into account that 

we find 

where the notation agrees with that taken in (1.5). 
Equilibrium differential equations in the domain n and static conditions on a sufficient- 

ly remote contour L, for the plate correspond to the stationarity condition of the functional 
(1.4). Taking account of the continuity of the displacements u : u*, v = v* on the boundary 

L, we obtain equailibrium equations for a rod element interacting with the adjacent plate 

- hrr, i- a&) IP -= 0, hrirl + al’ (s) = 0 (1.6) 

because of the arbitrariness of the variations 6u,6v(8u*,6v*). 
Here a,,, q,, are the normal and tangential components of the stress vector acting on an 

area with normal n. Because of the variation of the reinforcement stiffness G(s), we have a 
condition on I, 

'i&(s) + ?b, = 0 (1.7) 

from which the constancy of the strain (equal intensity) of the reinforcing rod follows 

e(s) = -u,*y, + 22,*xX = C, (C, = const) 

We find the condition on the hole outline 

(1.8) 

K {Tl (4 un + T, (4 &I - ‘/2 IUza -t Vv2 + 2vu,vy + Ydu, -I- vx)“l} - p-la, (s) - B’(s) f Al = 0 (1.9) 

because of the arbitrariness of the variation &z. The relationship (1.7) is taken into 
account here. 

We go over to the stresses or,, at, rln in (1.9), where a1 is the normal component of the 
stress vector acting on an area with normal t coincident with the tangent direction to the out- 
line. To do this we use (l-6), the notation (1.51, the plate equilibrium differential equa- 
tions, the continuity conditions for the displacements on L, the generalized Hooke's law,and 
the Cauchy eleasticity relationships. In differentiating the directional cosines x,, Y, we 
take into account that 

5 ns = -Y, I P, Y,, = 5, IP? &I, = Y,, = 0 

i.e., that in contrast to the derivatives with respect to the arclength coordinate S, the 
derivatives with respect to the normal along the contour are zero just as along any other 
straight line. Consequently, condition (1.9) on L takes the form 

-Va(O, + 0 + (1 + ~)(rt,~ - a,a,) + 2 (1 + Y) an2 + a,p [(2 -I- v)han / an + 80, / an1 =LI C,(C, = const) (1.10) 

As in /l/, we obtain the additional conditions (1.8) and (1.10) on L as natural conditions 
of the variational problem on the stationary value of the functional Ufor a movable contour 

L andavariatible stiffness G(s) in addition to the usual equations and boundary conditions 
for the problem under consideration. These conditions permit determination of the law of stif- 
fness under the tension G(s) of the reinforcement and the shape of the contour L. 

Remark 1. If the problem of determining the shape of an unreinforced hole in a plate 
is examined under the same loading conditions (1.1) from the condition of minimum elastic 
strain energy for a given area of a hole enclosed by a contour, the condition of constancy of 
the stress intensity is obtained as an additional condition on the contour. This result can 
be obtained from the stationarity condition in the domain Qwith moving boundary L for the 
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functional (1.4) in which the components associated with reinforcement must be omitted. The 
same condition was obtained in /14/, where the minimum of the maximum value of stress intens- 
ity in the region occupied by the plate with attached boundaries was taken as the criterion 
for the optimum hole shape. It is shown in /15/ that an equal-stressed hole outlineisoptima 
from the viewpoint of stress minimization in a plate. The problem of determining the shape of 
an equally strong outline of an unreinforced hole in a plate stretched in two directions is 
solved in /16/. 

Remark 2. The integral criterion to determine the reinforcement of a hole in another 
shape was proposed for a shell in /17/, and in application to the reinforcement of a circular 
hole in a plate in /18/. The stiffness characteristics of the reinforcing rod, which are 
constant along a hole outline of given shape, were sought from the condition of minimumenergy 
of the additional state of stress (due to the presence of the reinforced hole) of the shell 
(plate). 

2. Transformation of the equations by using a complex representation of 
the stresses and displacements. 
on a plate. 

Solution for the case of equilaterial tension 
Let the exterior of a unit circle 15 I> 1 in the 5 plane be mapped onto the 

exterior of the desired contour L in the plane z = x+ iy by means of the function 

% = o (5) = x b,Q-fk (bo = 1) 
k=O 

(2.1) 

where B is a real quantity defining the scale, and bk are unknown real coefficients. Letthe 
complex variable 5 on the unit circle henceforth be denoted by 7 = exp (i@,O < 0 < 2~. 

Let Q,(5), Y(L) be the Kolosov-Muskhelishvili functions in the transformed domain 15) > 
1 that describe the plane state of stress in the plate. In conformity with /19/, and taking 
account of symmetry, these functions have the form 

(2.2) 

Here RI;, Qk are certain real coefficients, the constants r,r' are determined from the con- 
ditions at infinity (1.1) 

r = (P + q) I 4, r’ = + - q) 1 2 (2.3) 

We seek the unknown function G(s) (the stiffness of the reinforcing rod under tension) 
in the form of a Fourier series expansion 

G m 
z- z 

Fh_COS(%%) (F,,= 1) (2.4) 
k=o 

where Fk are unknown coefficients. Henceforth, we use a function of the complex variable T 
( a point of the unit circle) 

g(z)= g Fk+k (Fo=l) 
A=0 (2.5) 

in place of (2.4), such that G/A = Reg(T). 
Using the functions (2-l)- (2.3) and (2.5) introduced, the boundary conditions (1.6), 

(1.8), (1.10) are converted, respectively, to the form 

Here 

- 4 (1 + v)-IRea (T) + p [(I + Y)-’ + AN I w’ (7) le3 Re g (~)l = 0 

Im [P (7) + hy-cg’ @)I 0’ (~)I-‘1 = 0 

Re 12 (1 - Y) @ (+c) - (1 + v) P (~)l - p = 0 (CL = const) 
- (1 + v)-’ (4M Re d, (t) + p 18 (3 - Y) (1 + Y)-’ Re 0 (z) - 

Ml} - Re IP” (7)l + 4 (1 -Y) (7 -v) (1 + v)-* IRe (r, (z)l”-- 
C = 0 (C = const) 

(2.6) 

N = 1 CO’ (t) I* + Re [zo” (z) 0-1 
P (T) = -? IO (z) w (z) + 0’ (t) Y (t)l/ 0’ (z) 
M = N-l Re {- (5 f Y) (1 + Y)-’ r I o’ (z) Ia 0’ (z) + 

? IO (t) (0,” (2) 0’ (z) - 0 (T) oM (T)) + (w’ (%))a Y’ @)I) 

p = 2..% / (p + q), X = A I (EhB) 

(2.7) 
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Four functional equations (2.6) have been obtained to determine the functions 

where m(r), Y(z) are the boundary values of the appropriate dimensionless functions @ (C)Y 
y (5) obtained from (2.2) and (2.3) by dividing them by (p + 4)/2. The coefficients Rk, Qk, bk, 
Fk in (2.8), the constant C in the last condition in (2.6), and the parameter p related to 
the strain e of the reinforcement by the notation (2.7) are unkown. The relative stiffness 
parameters under tensionhandthenonsymmetry of the load 

V E (P - 4) / (P + Q) (2.9) 

are considered given. 

Let us note that the first, second, and fourth conditions in (2.6) correspond to 

(1.10) only in taking account of the third condition in (2.6) of the constancy of the 

of the reinforcing rod. 

(l-6), 
strain 

In the particular case when the stresses in the plate are identical at infinity (P = Q)7 
the solution of the problem under consideration is a circular hole reinforced by a constant- 

stiffness elastic rod. For V = 0, bk = Fk = 0 (k > 1), we have from the first and second con- 

ditions in (2.6) 

We obtain values of the constants p, C from the third and fourth conditions in (2.6) 

2 
u= l+h(l+v)’ 

c=-(*(24x+ %)-3Q,z 

(2.10) 

(2.11) 

In the equivalent reinforcement problem /l/, the solution in the equilateral tensioncase 

is a circular hole reinforced by a constant-stiffness elastic rod. However, the value of the 

parameter h is defined strictly and equals (1 -Y)-'. The parameter li. = A /(EhB) is given 

in the problem under consideration. 

3. Construction of the approximate solution by the small parameter method. 
In solving the inverse boundary value problems of elasticity theory when the domain boundary 

determined from certain additional conditions in unknown, the small parameter method /20,21/ 

turns out to be sufficiently effective. 

Let the stress (1.1) act in the directions of the Os,Oy axes in a plate at infinity, 

where the load nonsymmetry parameter (2.9) for V is considered small. We seek the coeffic- 

ients &, Q,., bk, Fk in (2.8), and the constants p,C in conditions (2.6) in the form of 

expansions in powers of V 

~~ = jjjk R’k2j-k)V2j-k, m Qk = jz Qck2j-k-l)vlj-k-l, bk = 5 bpi-k)v/si-k, Fk = 5 Fj;i-k)p-k 
j=k 

(k=1,2,3,...) (3.1) 
j=k 

For V = 0, i.e., for p = q, only coefficients of the zero approximation remain, VI = Ql@), 
p = pm, c = cm, that agree with the coresponding quantities in (2.10), (2.11). 

Substituting (2.8), (3.1) into the boundary conditions (2.61, we obtain a system of equa- 

tions, for identical powers of r, for the quantities of the zero approximation for V”, the 

first for In, the second for p , etc. Since the coefficients of the preceding approxima- 

tions are calculated, the system of equations to determine the coefficients of the next approx- 

imation turns out to be linear. 
Coefficients of the zero, first, and second approximations were calculated for the actual 

solution. The computation results are presented in Figs-Z-7. The Poisson ratio Y was taken 

equal to 0.3. 
Hole contours L are represented in Fig.2 for h = A /(EhB) = 0.3 and also the correspond- 

ing dimensionless stiffnesses under tension G/A of the reinforcing rod as a function of the 

angle 8. Displayed in Fig.3 are the contours L and stiffnesses G/A of the reinforcement 

for v = (p - q)/(p + q)= 0.2 and different values of h. The distribution of the stress con- 

centration factor a intheplate is shown in Fig.4 along the contour L of the cutout (alongthe 

angle 6) for h = 0.5 (dashed lines), h = 1.0 (solid lines) foranumber of values of the 

load parameter V. 
The stress concentration factor u is calculated as the ratio of the stress intensity at 

a given point to the stress intensity at infinity 
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a = ui / uiw, oi = (CT,* + $2 - u,uv + 3Zxyy, (Jim = (p” + 9% - pq)“’ (3.2) 

Dependences of the maximum value of the stress concentration factor amax on the cutout 

outline in a plate on the relative stiffness parameter h are represented in Fig.5 for values 
of V indicated on the curves. The curves have a minimum, where as the load nonsymmetry para- 

meter V increases the value of the least possible value of amax grows. Dependences of the 

parameter M = ZEE /(p + q), related to the strain of the reinforcing rod, and of the constant 
c in the last condition of (2.6) on 1, are also presented for V=O.2. The change in 

versus V in the range O< VGO.3 is insubstantial. 

p,C 

It is of definite interest to compare the solution obtained to the solutionoftheproblem 

of determining the equivalent reinforcement /l/, also selected in the form of a momentless 

rod. We take the parameter h equal to (1 -v)-1 z 1.429 (for Y = 0.3), and both solution will 

agree for V=O. 

Hole outlines in the problem of equivalent reinforcement (dashed lines) and the holes 

found (solid lines) are displayed in Fig.6 for a number of values of V. Also presented for 

comparison are the stiffnessesundertensionofthe equivalent reinforcement and the reinforce- 

ment obtained from the condition of minimum energy of a plate with a reinforcement. 

The greatest stiffness for the reinforcement found corresponds to intersections of the 

hole outline with the axis of symmetry oY along the direction of least force action (0 =n /z, 

6=3n/z), and the least stiffness to the points 0 = 0, 0 = x. A qualitatively different picture 

is observed for the equivalent reinforcement: the greatest stiffness at the points 0=0,0 =n 

and the least at the *points e=n/z,tl=3n/2. The equivalent reinforcement works underhigher 

stressed conditions. For instance, for V=O.i the maximal stress in the equivalent reinforce- 

ment, referred to the stress intensity in a plate at infinity, holds at the points I3 =n/2, 
13=3n/2, and equals 0.818. An analogous stress in the found reinforcement, which is constant 

over the outline, equals 0.690. But by comparison with the problem of the equivalent rein- 

forcement, the greatest value of the stress concentration factor (3.2) in a plate on the cut- 

out outline is greater than 1 and equals 1.091. 

As computations showed, the hole outlines and the stiffness curvesundertension practical- 

ly agree for the first and second approximation solutions up to load parameter values V(small 

parameter) equal to 0.3. However, the second approximation improves the accuracy of satisfy- 

ing conditions (2.6) substantially. 

Presented in Fig.7 for h = 0.3 is the change in the quantity m/t& as a function of the 

angle 8 , where cp(8)denotes the left side of the third condition in (2.6). The dashed lines 

correspond to the first approximation, and the solid lines to the second. 

The authors are grateful to N. V. Banichuk for discussing the results of the research. 
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